

WJEC Wales Biology A Level

SP 1.3a: Determination of water potential by measuring changes in mass or length Practical notes

S www.pmt.education

D O

Introduction

Osmosis is the movement of water molecules down their water potential (Ψ) gradient, from an area of high Ψ to an area of low Ψ , across a partially permeable membrane. It can be investigated by placing a potato in solutions of different sucrose concentration.

Equipment

- Potato
- Sucrose solutions: 0.2, 0.4, 0.6, 0.8, 1.0 mol dm⁻³
- Distilled water
- 6 boiling tubes
- 6 bungs
- Boiling tube rack
- 50 cm³ measuring cylinder
- Cork borer
- Ruler
- Scalpel
- Forceps
- White tile
- Stopwatch
- Balance

Risk assessment

Hazard	Risk	Precaution	Emergency			
Broken glass	Cuts	Keep glassware away from the edge of the desk	Dispose of broken glassware carefully; elevate cuts and apply pressure; do not remove glass from cuts; seek medical assistance			
Scalpel	Cuts	Direction of cut away from the body; do not attempt to change blade; keep scalpel away from the edge of the desk	Elevate cuts and apply pressure; wash minor cuts in cold water; seek medical assistance			

S www.pmt.education

▶ Image: Contraction PMTEducation

Method

- 1. Using the cork borer, scalpel and ruler, prepare **six** potato chips **50 mm** long. *Ensure that there is no potato skin present (contains suberin, a waterproof layer that prevents osmosis).*
- 2. Dry each potato chip by rolling it over a paper towel three times.
- 3. Measure the starting mass of each potato chip using a balance. Record your results.
- 4. Fill six boiling tubes with **30** cm³ 1.0, 0.8, 0.6, 0.4, 0.2 and 0.0 (distilled water) mol dm⁻³.
- 5. Using the forceps, place a potato chip into each boiling tube. Add a bung to prevent the evaporation of water. Set a stopwatch for 60 minutes.
- 6. After 60 minutes remove each potato chip from the boiling tubes.
- 7. Dry each potato chip by rolling it over a paper towel three times.
- 8. Use the **balance** to measure the **final mass** of each potato chip. Record your results.
- Repeat three times and calculate the mean % change in mass for each concentration of sucrose solution. Record you results (see below).

% change in mass = $\frac{\text{change in mass}}{\text{original mass}} \times 100$

- 10. Plot a graph of mean % change in mass of potato against sucrose solution concentration.
- 11. Estimate the water potential of the potato. The sucrose solution in which there is no change in the mass of the potato chip should have the same Ψ as the potato.

Variables

Independent variable

The variable that is **changed** i.e. the concentration of sucrose solution. <u>Dependent variable</u>

The variable being **measured** whose value depends on the independent variable i.e. mean % change in mass of potato chip.

🕟 www.pmt.education

Controlled variables

The variables that are kept **constant** during the experiment:

- Surface-area-to-volume ratio of the potato chip Controlled using a cork borer (same circumference) and ruler (same length).
- Length of time left in the sucrose solution Controlled using a stopwatch to time 60 minutes.
- Volume of water on the surface of the potato chip Controlled by rolling over a paper towel three full times.
- Volume of sucrose solution
 50 cm³ measuring cylinder using to measure 30 cm³ of each sucrose solution.
- Same type and age of potato Potato chips should be from the same potato or the same type of potato.

Results

Sucrose concentration (mol dm ⁻³)	Mass of potato chip (g)							0/ change in mass		Ma 0/			
	Initial			Final		Change		% change in mass			Mean % change in mass		
	1	2	3	1	2	3	1	2	3	1	2	3	11035
0.0													
0.2													
0.4													
0.6													
0.8													
1.0													

Conclusion

The more concentrated the sucrose solution the more negative the mean % change in mass of the potato chip (mass is lost).

This is because the **more concentrated** the solution, the **lower the water potential** (Ψ). Water moves out of the potato chip by osmosis from an area of high Ψ to an area of low Ψ , down its water potential gradient into the surrounding solution.

DOG PMTEducation

www.pmt.education